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Discontinuous systems with optimizable discontinuity points defined by stochas-
tic differential equations are considered. The principle of optimality of such
systems is established as a natural extension of the principle of maximum, and
a numerical methed of determination of optimal control is proposed.

The considered problem allows important physical interpretations related, for
instance, to the generalized control [1] which makes possible to consider control actions
as instantaneous pulses, the selection of motion program [2] and of design parameters
for composite aircraft, which ensure the highest probability of payload delivery to the
specified destination, or the development of a programmed control of variable nature
with the most precise realization of unperturbed motions, and others.

I, Statement of the problem, Wenave to determine the optimal
control v = (u, a, T)of 4 system whose behavior on the time interval [2,, ¢],whicn

is successively defined on adjaceat intervals [t;a, £ (f = 1,. .. k) by the system
of differential equations

dXi(t) =/ (t, X, u, a)dt + élozvj(t, X)dne (2) (1.1)

Xi (to) = Xie, tE [tj..l, t’] (i = 1,. « oy Iy j = 1,. . ey k)

that provides the minimum of functional

k
Io(0) = 3 M lfo (@ X)) (-2
with constraints
d (1.3)
I.w)= N Mif(a,t; XN =0 (s=1,...,9)
je=1
P (u) =0 (S= 1,..., k0)1 8s (a) =0 (3= 1,..., Qn)
where ¢ isthe time, T = (£4,. . -, ljs- » -» Ix)s with instants of time 2,,. .. .,

tjy. . ., by satisfy the inequalities £, < ... <6 ... <k, X () I8
an n-dimensional vector function of state of the system that is continuous on every
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time interval [¢;.,, #;] (j = 1,.. ., k), u () is an  r—dimensional vector function
of control, & is an mo-d1mensmn41 determinate vector of control parameters, 1,
(t) are Wiener process independent in the aggregate, and ¢ (¢, X, u, q) and
oiv (¢, X) are continuously differentiable functions determinate on [tj-n t;] that
satisfy with unit probability the requirements for the existence of continuous solutions
X (f) and the probability density p (¢, X) of process X (¢) that satisfies  the
Kolmogorov —~Fokker -—Plank equation

FPX) =~ 2 - (9 (t, X, u,0) p (¢, X)] + (1.4)

te=

> Z-g—— o (t, X)p(t, X)) = D (¢, p,m,0), L& [t ts)

1, Vel

D (t, X) ’tuz!o = p(tg, X)

where the superscript ;j defines the structure of the controlled system (1.1) on (2.4,
) ,and I, (v) (s=0,..., g) are continuous differentiable bounded function-
als that represent mathematical expectation calculated by the formmla

k
L) =3 §f," (a, 13, X) p (¢, X) dX (1.5)
J=}

where Q  E, is the realization region of X. The symbol I, (v) emphasizes

that v = (u, q, T) are assumed to be independent variables, It is further assumed

that the functional I, (v) is bounded below, i.e that inf /, (v) = I, (v*) >
- 00,

2, Necessary conditions of optimality, Onabove assumpt-
ions the problem (1. 1) —(1. 3) reduces similarly to that in [4] to the determinate prob-
lem of minimization of functional I, (v} (1,2) in the presence of the differential
relation (1,4). The necessary conditions of optimality are defined by the following
theorem,

Theorem 1(the principle of optimality inthe mean)
Optimality of the admissible control v* = (u*, a*, T'*) of system (1. 1) that results
in the minimum of functional [, (v) requires the existence of a random function

A (¢, X) 5= 0 defined by the equations

n
M, X (2.1
7;:::.%_1-_—.— aX (pl(tXu’a)_
f=1
1 - %A
7 ), axax; o 6 X)
1, V=1

teiti—lﬂtﬁ} (j='1,...,1€)
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q - N
Mt X) =M, X), — %}ﬁa,j,’ @t XNG=1,...,.k—1) (2.2)

q
AMip X). = — ‘% af.f (a, ty, Xk)

a) the optimal control u* resuits in the maximum of function
MR (t, X, u,0,0)] = R (t,X,u,a,\) p(¢, X)dX (2.3)
a

n
’ ak .
R (t, X, u, a4, A-) i Z%‘X"'@i] (ty Xv i, a)
fre=l i
of variable u foralmestall & (4., Hl (G =1,..., &) , and
b) parameters a* and I'* satisfy the transversality condition

&

i(ga‘M("éL)“ :S (aR))d‘)'{“Zﬁaag' (2.4)

sl
Fi tj" 1

at,}
Mx] LJ~1 e [+ 4 ( )=0
( » c*+2 s ET
Corollary, The optimal control u* satisfies the relation

()= S

s=x]

When u* obtains in the interior of a set of controls, the right-hand side of (2. 5)
is zero,

3, Example, Letitbe required to determine the optimal control u* of a
system whose behavior on the time interval [0, £,] is successively defined on adjacent
intervals {0, 1;,] and [#, %] by the stochastic equations

X, = Xydt, dXy = udt 4- ody (3.1
X:(0) = ¢, X4 (0) = eg; t = [0, &4]
X, (0) = Xy (t)es Xa (0)- = X3 (t)4s t = {1y, &3]

which provide the minimum of functional

2 (3.2)
Io(w) = D} M [Xy(t;)— ¢,

j=1
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with constraint on the control
fe|<1 (3.3)
In conformity with the necessary conditions of optimality we seek the optimal con-
trol u* using the condition
R (t, X, u*, a,A) = maxy R (¢, X, u, 6, A) 3.4

dh a
R(t,X,u,a,h)=3'f;xz+5z“

where A (2, X) is determined by the solution of equation

ar d ad s a2 3.5)
ot =—Lh L=ZXigy;+u3y; + 7 3X0X; (
Aty X)o=—[X;(ts) — 6]}, t =ty 4]

Ay, X)o=A (1, X)e — [Xy (8) — &5l t = {4y, 0]

Using (3.4) and taking into account (3, 3) we determine the optimal control

u* () = sign 5?;— (3.6)

Taking into consideration (3. 6) and introducing the inverse time v = ¢, — ¢ from
(3. 5) we obtain

di/dt = L) (3.7
Ay X)=—[X; () —alt, 1=t ul, 1a =0
A, X)o=A (T, X)y — [X; (1) — )3, T & [13, 7]

We seek the solution of A (1, X,, X,) of the linearly quadratic form [5] with in-
determinate coefficients
A=k () + by (})X1 + Iy DXy + by (DX,® + kie (DX, X, + (3.8)
kas (1) X2

Substituting the expressions for A into (3.7) and equating coefficients at equal
X = (X,, X,) we obtain for k (v) on [1,, 7;] the system of ordinary differential
equations

ko' = ke + Okag, by = kg, ky' = ky + 2k (3.9)

k' =0, k' = 2ky, ksy' = kyg
with initial conditions

ko (ta) = ks (Ta) = kg (Ta) = kyg (%2) = 0, Ey (T5) = 2¢4, kyy (tg) = — 1
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Solving (3. 9) with initial conditions in inverse time we obtain

. G 1
ko (1) =12 — 5 v T k(D) =20 — 1% Ay (T) =20t — 13
k() = — 1, kg (0) = — 21, kyg (1) = — 72

As the result we can represent the optimal synthesizing function u* on |[1,, 7,]
in the form

u* (1) = sign [2c,T — 18 — 21X — 212X,] (3.10)

On [v, 1] the boundary conditions of system (3, 9) are

ko (1) = 0, ky (1) = 2 (c; +¢3) — 1%, ks (1) = 2e,7 — 78 (3.11)
ki (t) = =2, kg (7)) = — 7y, kg (1) = — 12

Solving (3, 9) in inverse time with boundary conditions (3.11) on  [1;, 7], Wwe
obtain the optimal synthesizing function u* on |7, 7,] of the form

u* (1) = Sign [’/21«'18 —_ 201T1 + 2 (Cl + Cz)T —_ 3/2111'3 — 2 (T —_ ‘l':l)a + (3¢ 12)
(=T — 4 (v — )Xy + 2 (=57 — 2 (v — 1)} X,]

1t follows from (3. 10) and (3, 12) that the optimal control is a piece-wise-constant
function whose values are 1.

4, Numerical method of optimal control search, For
the numerical determination of optimal control v* = (u*, a*, T*) of problem
(1. 1) —(1.3) we apply the method of gradient projection, The computation algorithm
for that method is determined by the form of the formula of the Lagrange first variation
functional for arbitrary control variations. Let us compose for problers;l. 1) —(1.3)
the Lagrange functional

q
Fv,m)=1I,(v) + ‘21 a.,(v) + (4.1)

t;

k ']
3§ mOnwi+ 3 e

3==]1 j==] f]._l

Ko

where n = (ct, u (¢), B)is the vector of Lagrange, multiplien We introduce the rand-
om function A* (¢, X), G =1,...,k; s =0,.., g)which is continuous on [£;-;,
t;]  and satisfies the equation

; n
ax]& ls .2
At = —_=— Z L 9/ (¢, X,u,a) — (4.2)

1wl

ak)s
ZI BX O"V (t X)
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telty, ] (G=1,..., k)
N (8, X)_ = Nt X), — A (@ 4, X)) =1,..., k—1)
Ax (e, X). = _f'k (a, &, Xk)

The formula for the first variation of the Lagrange functional can now be represent-
ed in the form

OF = %F v+ edv, ) = (4.3)
k ‘j ks oy
- 2 \ [ML,,R"— Zp, t) -ﬁf-]aadt +
y=1tj-1

{

V3t (Lo — RJ‘+Z§ 2]
[’le (af:""t} s

8

k
Z [ML‘ (Arj' - M_l") Ii-lj + Lf,'flj] at,

Je=l

=1
a [/}
=1, Lu""zaa"ﬁr La=2al"a‘;' etc.
sm=() suml

In conformity with the concept of the gradient method it is reasonable to consider
in the functional space the following iterative process of search for the optimal control:

up* —up"+h"[MLupR"—L°w.1 p=1..orj=14..,k &9

= h"[ 2, M (Lofy — S LoR* dt) + L"tg,]
J—l
(i=1,...,myp)
7 = tjn — An [ML, (M — M-15) lizt; + ML f7] (i=1,...,4)

where n is the ordinal number of iteration, A" is the pitch of the 72 «th iteration,
Expressions in the right~-hand sides of (4, 4) are calculated using the 7 -th solutions
of (1.4) and (4.2) [6, 7).
To determine multipliers ., i, (f) and f, we select from all directions du," (¢),
6a;®, and Ot defined by the respective expressions in brackets in the right-hand
sides of (4,4) the admissible directions that satisfy in conformity with the method of
gradient projection the conditions
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r okl X
= I (v) 80" = — 2;‘4 § ¥ (% ) dugn e dt + (%9
Pel fu=) ti"'l e

t 3

Shei-f e

1==] jam} t -1

J'
ZM((:V"‘ M ™) Lt + — at ) m=0 (m=1,...,q)

j=1

m(u)w(t)-z dug*(t) =0 (m=1,...,k)

Bx
Zm (a)ba"=§ Z.dar=0 (m=1,...,9)
wree ]

Substituting Sup" (f), 82,", and  O8f;" determined by expressions in brackets in
(4.4) and (4, 5), we obtain a closed system of linear equations in the unknown Lagrange
muitipliers o,, u,(f), and §, . Since u () has an infinite number of values for
every ¢ , it is evident that system (4, 5) consists of an infinite number of equations,
To overcome this difficulty we cover the time interval [£;.,, &) (G = 1,..., &)
by a denumerable net of pitch T with nodes 2, = 44 vw=1,.. N; t =

N1; v 5= j) , and carmry out control function refinements with the required dcgtee of
accuracy at each fixed ¥y & [¢.4, ;).

Thus the iteration process of optimal control determination reduces to the following:

u0“+1 (t‘v) = uD" (tv) + hn [MLﬂp Rj. - L%J""‘v (P = 1‘" . (4‘ 6)
Larni=1..., kv=1,..., N)

o =ap— h,.[ E M (Lo, (7 — TR® | 1=2) + L%,
(l =1,...,mo) _
=0 — B IML (W — N5 ) mty + Lyfd] (=1, B)

where derivatives in the right-hand sides are calculated for specified u," (£), a,” and
¢ ateach fixed point of the cylinder & X [to,4] along the trajectories (1.4)
and (4.2); Multipliers a,, i, (£), and P, are determined by solving the non-
degenerate system of linear algebraic equations
etk N a-+kei-ae

2 @B, 4+ 0—§‘ 2 B (tv) Boms + % o ﬁsBms = Bmo (4«7

(m:i,.. t9)
Ko

o+
20. ms+ 2 Ps(tv)cma"*‘cmo (m":iy"-yk!))

8==1
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g q-4+ked-ge
2} @D+ 2[ BaDms=Dmo (m=1,...,90)
=zl saxg--Ko-1

Coefficients at the unknown a,, B, (f), and A, are defined by the equations

Mo ¥ N
('_ 1)1 2 AimAis -+ S Q.fmo.is - 2 Uvmss
f=1 =] L7}
li,...,q; 1=0
8§

B = o =1
ms =
Uwmey s=g¢+1,...,q+ko
me dg
Z,Ai’"’"ﬁa_s’ s=q+k+14,...09+k+q
i=1 t
. %, R’ 1,..q, 1=0
1 m
(_1)21‘[(3“0 du, )’ SS{O, l=1
Cm;— Q;=1
%y Y, -
2(6_%-—517:)’ S-q+1v~-"1+k0
p=1
Me
. 08 1,...,9; 1=0
(-—1) ZTA{“ §= 0, 1=1
Dm:= m:=1
O %8 gtk d...gtheta
Ta w0 PTATRT DT RS

Tom]

k i N m
af R’
Aim = E M(-—ggf—-—f l—mi—- ot )9 Ais = Aim |mus
Vam v

j=1

, rm 8f
Qjm = M ((Mm - z':t'“:l’ )'tatj + ‘_a%n;") ’ QJ’: = Qim lm-'

r

k .

aR’™ an’

O = 3,300 (22 4
vms aup up, tmty

puml jme)

Note that the optimal control obtained for the determinate problem formulated
on the assumption that the system is free of interference, i.e, that 0w’ (£, X) =0 ,
can be taken as the initial approximation u,’ (t), a;°, ?;° of the stochastic problem,

Convergence of the process to the optimal solution can be proved using the reason-
ing of the proof in [5] with some additional assumptions,

The general form of the gradient iteration process (4. 6) is

vt = — BF, (Ut ) (4.8)
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where 1" = (a”, u” (t), B") satisfy the nondegenerate system of linear equations
(4.7,

Theorem 2, If the functional F (v, n) is bounded below with respect to
U and the gradient F,’ (v, n) satisfles the Lipschitz condition with constant M,

O<e, < P2 (M + 2¢,), & > 0 , then the following statements hold for
the sequence (4, 8).

1°. The functional F,’ (", n") monotonically decreases with v, and lim
o™ — V|| =0 when n-> co.

2°. lim F, (", 0™ = 0, when 7n -+ oo.
3°, If the functional F (v, m) is convex with respect to v, then

lim F (", n™) = F (v*,n) =inf, F (v, M), n—> 00

5, Example, Letusconsider the problem of finding the optimal control for
system (3, 1) which ensures the minimum of functional
To (u) = M [Xy ()]
with the constraint

Iy (u) = M [X, (t2) — ca) =0

In conformity with the described method the optimal control (u*, #*) is determined
by the following iteration procedure:
3 10
u™(t) = u" (1) — A"M (?'g;"‘ 4+ o

dRw i
W™ (2 ) = ™ (1) — WM (-'3;;— +a W‘) tmty Oy afty, b}

g =4 M), oo ] A

N 2 j N
Qo == 1221&!(33 1. 33’0) —
1 Ju du Jt=ty

Vex) fee)

9RM )

73

t=ty v S 108 (5,1)

2
NG - M P =19 | ¢

32; N 2 12 1
E f i jm § : § t aR .

{ M (?"%1 - x{ 1’1): !l=l{ﬂv - M (-—5-;-") t="\'}
J=1 Vux} jw=l

where expressions in the right-hand sides are determined by the » -th solutions of
equations

Lp=0; ptX) gy, =P (ta X), 110, 4] (5.2
P (37 X) ‘{_—ztl =p (tlv X)$ t = {t].v 32]
LY\ =, LYAR = 0, A2 (f,) = — X, (&)
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telt, 4l AR ()= — [Xp {t) — ¢}
L¥0 = 0, LA =0, A1 (z)_ = A0 (t)4; AL (8) = AT (1),
te= [‘11 0]

L 0 ) a &
LT =—; + Xogx; + v 3%, + XX,

The expressions for R/¢ and R/ (j = 1,2) are of the form

j i0 f1 i1
Jo ae g i a ah
RU=Xigx, +uv3r, . B =Xy, tuoy;

6, Proof of Theorem 1. To prove the optimality conditions we use
the principle of Lagrange [9]. For the problem of minimization of functional Ig(?)
with the differential relation (1.4) and constraint (1, 3) we define the Lagrange funct-
ional in the form (4,1). Let v* = (u*, a*, T*) be the optimal control, Let us
consider the control » = (u, a, T, where

u(®) = u*(t) + Au(t),

a=2a*==e8a, T =1T%4¢edT

Au (t) — edu (t)’ te [tos tx] \ Uiyi
No— u*, ey

where y; (i=1,..., k) is a half-open interval over which an almost impulsive
variation 8u = w; — u* occurs [10] defined on Ty <2 < T + &li.

Owing to the continnous differentiability of functions @/ (¢, X, u, a), 6" (t,
X) with respect to ¢, X, u, and a, solution of (1,4) with initial p (f,, X) is
continuously differentiable with respect to e , whenAu (), 8a,and 87 are fixed,
We denote that solution by p, (¢, X,, Au, da, 4T) and determine the variation

— 1 Pp—p an
op —]:,?; e O

Ea=0

which specifically means that when & —- 0 the term €8p is the principal linear part
of p -+ ebp generated by the variation of control,

Since vy* = (u*, q*, I'*) is the optimal control, the first variation of the
Lagrange functional

OF (v,1) = ——F (v* + &80, 1) = (6.1)
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ia,z[gmpdx+zw( )6t,+M( o, )Ga]-%—
$==0 Joma
ke k

i
1
lj‘
;;é us(t)T—budt-}-Zﬁs—;&i—ba}O

$==1

must be nonnegative,
Let us determine the first derivative of (6,1). From (1,4) we have

—%— [Pe — p] = Q(L, pe, u* + Au,a* + eda) — D¢, p,u*,a*) (6.2)

Muitiplying both sides of (6, 2) by the indeterminate random function A (¢, X)
5= 0 and integrating over the cylinder Q X [¢,*, #,*] taking into account that
u=u*+ Au= o when t&[r,7 4 el], afterdividing by & and paming

to Limit with allowance for the theorem on finite increments, we obtain

t;*

k
Z S §xf’-%&dm= (6.3)
=1 47

i1

k4

: a0’ an”
Y gx[ > op -+ o au+-§-’f-aa]dm+
jaml t'

2& [ (¢, p, ©,a%) — D (¢, p, 0%, 8%)] |tme L dX + O(e)

j=s1

Without the loss of generality of results we shall consider a single needle-like
variation, since owing to the additivity properties of (6. 3) the effect of several needle-
like variations occurring over various infinitely short time intervals can be considered
independently of each other, Integrating by parts the left-hand side of (6,3)  and
writing the expression in the right-hand side with allowance for (2. 1) and (2. 3) and
transformation of integrals [4], we obtain

k

2 ‘ § A (5*, X)Op (6%, X) — M (tha, X)8p (tFy, X)) 4X = (6.4)
=1
’*

2 ' é["’;f: du+ 28 ﬁa]dedt-}-
j=1

ti
find

-1
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Q (R (2, X, 0,a* A) — B (¢, X, u*, a*, A)] iz Lp 4X + O (e)
Q

g

u
-

Let us determine variations 8p (¢/*, X), and 6p (£;,*, X) . On the strength
of the supplementary definition of u (f) we pass to the integral form (1. 4) beyond

the imits  [¢;.,*, t;*], we find that on the fairly short interval [t*, ¢;]
é (6.5)
pt, X)— S pidt, tj=1t* 1 ed;

-
£

b (t.'i*' z) =

Using the theorem on finite increments and taking into account that 6p; =p
(tj» X) — p (¢/*,X*), and bp (4*, X) = p (¢;*, X) —p (4,*, X*) , from

(6.5) we obtajn

&p (4%, X) = dp; — (p: l,,,;) 6t; + O (e) (6.6)
Similary we obtain
8 (1% 1) = 891 — (1 | s Yot + 0 (9 6.7
The substitution of (6, 6) and (6. 7) into (6, 4) yields
k—1
(6.8)

5{2 [ (8%, X — M t5*, X),1 895 -+ M (6*, X) 8P +
=1

i (A — M")z-tj-pbt;}.dx =

Ju=l

k " 7
P §[—5—-6u+-?5—ba]dedt+

k
Z§ (R (¢, X, 0,0% &) — B (t, X, 0*, a*, A)] h=ddp dz + O (¢)

=1

We use formulas (4, 2) and (4. 3) for determining the random functions A’ (¢, X)
and R™ (t, X, u, a, \) appearing in (6,8), Taking into account (6, 8) from (6, 1)

we have
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{ 2“"”1(85:)**29:(‘)-%%-]&&4- (6.9)

=1 '? 8=={) s==}
71
q 3 : ty*
otj Y 2o ag,
[ZAQ’JZIJM( e S ——;—-—-dz)+2§,..é_..a ]6«: +
8o - !*.‘. gan}
. g §=1
Z 2 aM [(?vtj' —= A frmtp + ;; } &t; —
Jo=l g
q k ]
2 aazﬂ’-{ {R” (ti X! @, a*v "') - st (t, X, E*, a*, K)} ‘g.g-;l > 0
S2ml) j=1

which shows that for any selection of variations 8u, 8a, and 87 the following ne-
cessary optimality conditions:

M(—%;-) ~ ip, ()~ =0 (6.10)
Suml

i(iam(a’ )-tJS ( ) )+Zﬂ, %: 0

Ja=l  somQ o

-1

. 3 EYy)
M (7»,’ e ’&{ﬂ) I""fj* -+ ZG,IW (—g‘!—-—) =0
L]

7
MR t,X,0,a* 1)) — R (¢, X, u*, a* Mi=<<0
must be satisfied at point o* = (u*, a®, T'*), Since the last inequality in
(6.10) holds forany @ & U, hence
MIR (t, X, u*, a*, A)] = max MIR (t, X, w,a*, M)
o

from which follows statement a) of Theorem 1, Conditions (6, 10) conform t¢ condit-~
ions b) of that theorem and to its corollary (2. 5).

7. Proof of Theorem 2, The conditions of contimiity of F,' (v, -)
imply that

1
F@, ) — F@n, -) = — hnSer (™ —thoF ) (o™, 2), ) X

o
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1

Fo (o7, ) dt = — in\ 1Ry @n, ) — F) 07, )+
0
F, (v“-—th“Fv'(v“, b -)]F,,’(v“, Dt —hn | F, (", )"2 +
1 n
G 1 o, 0 e = (P — ) £y o, ) =

[

(=) I =< — el — o <0

Thus F (v", -) monotonically decreases with respect to v. Since the function-
al F (v, .) isbounded with respectto v, hence lim F (", .) exists and conseq~
uently b

[ — " P <F Q" ) — F (™, )]/ e~ 0

fipm, WY 12 F", )~F @™, ) F@" )—F @™, :) —
L R e 0

when n-> 00. The first two statements are proved,
If the functional F (v, -) is convex with respectto v, then
OSFEN ) —F % )SF O )" —v%) <

1E @ )l = oo 4 = ot — o % — ot | <

1
(175 @™ )l 4 - Io*— o)) fomt — om |

Since the expression in parentheses is bounded and, as previously proved, | v™?
—v*}]—>0, hence F (", -) > F (v*, -) when r— oo . The theorem
is proved,

REFERENCES

1, Krasovskii, N, N,, Theory of Motion Control. Moscow, "Nauka”, 1968,

2. Kozhevnikoyv, Iu, V., On the principle of optimality in the mean for dis-
continuous stochastic systerns, Avtomatika i Telemekhanika, No, 10, 1966,

3, Gikhman, I, L, andSkorokhod, A, V., Introduction to the Theory of
Random Processes, Moscow, "Nauka", 1965,

4, Rozenberg, G, 8., Sufficient conditions of optimality for dynamic systems
defined by stochastic differential equations, Avtomatika i Telemekhanika No.
12, 1970,

5, Krasovskii, A, A., Phase Space and Statistical Theory of Dynamic Systems.
Moscow, "Nauka", 1974,



862 V.A, Bodner, N.E. Rodaishchev, and E, P. Jurikov

6. Merklinger K.J., Numerical analysis of nonlinear control systems using
the Fokker —Plank —Kolmogorov equations, Trans, 2-nd Inem. Federation on
Automatic Control, Basel, 1963, Moscow, "Nauka”, 1965,

7. Budak, B, M, andBerkovich, EE M,, On the approximation of extremal
problems, Zh, Vychisl, (English translation), Pergamon Press, J, USSR Comput,
Mat, mat, Physics, Vol. 11, No, 3, 1971,

8, Levitin, E S, and Poliak, B, T,, Method of minimization in the
presence of constraints, (English translation), Pergamon Press, J. USSR Comput,
Mat, mat, Physics, Vol, 6, No, 5, 1966,

9, lIoffe, L D,andTikhomirov, V. M., Theory of Extremal Problems.
Moscow, "Nauka”, 1974,

10, Pontriagin, L. S.,,Boltianskii, V. G,, Gamkrelidze, R V.,
andMishchenko, E F.,, TheMathematical Theory of Optimal Process-
es, (Bnglish translation), Pergamon Pres, Book No, 10176, 1964.

Translated by J.J. D.




