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Discontinuous systems with optimizable discontinuity points defined by stochas- 
tic differential equations are considered. The principle of optimaMy of such 
systems is estabJ&hed as a natural extcntion of the principle of maximum, and 
a numerical method of determinatlou of optimal corttrol is proposed. 

The considered problem allows important physical interpretationt related. for 
instance, to the generalized control [l] w&h makes poaaibla to con&k contr+S actions 
as instantaneous pulse+ the selection of motion program [2] and of de@ parameters 
for composite aircraft, which erasure the high& probability of payload dei&ory to the 
specified de&nation, or the &v-t of a programmed control of variable natwe 
with the most precke rea$zaUon of unperturbed m&tons, aud others. 

l, S t a t e m e n t of t h e p L o b 1 e m, We nave to determine the optimal 
control v = (u, u, 2’)of a system where behavior on the time interval [ta, &whicn 
is successively defined on adjacent intervals [thI, t,] (j = 1,. . . k) by the system 
of differential equations 

xi No> = XIQ, t EE [tj+, tjl (i = 1,. . ., n; j = 1,. . ., k) 

that provides the minimum of functiOnd1 

Ia (v) = j** fif [fo (a, @)I 

(1.1) 

(1.2) 

with constraints 

$8 (u) = 0 (s = 1,. . ., k,), g, (a) = 0 (3 = 1,. - -9 40) 

where t is the time, T = (to,. . ., ti,. . ., tk); with instdnts of time to,. . , ., 

t. J" l -, tk satisfy the inequalities to < . . . < tj < . , . < tkr X (t) is 
dn n-dimensional vector function of state of the system that is continuous on every 
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time interval [tf_,, t,] (j = 1,. , . , k), u (t) is dn r-dimensional vector function 
of control, a is an ma- dimensiondl determinate vector of control parameters, Q, 
(t) are Wiener process independent in the aggregate, and rpij (6 X, U, a) and 
o:, (t, X) are continuously differentiable functions determinate on [tj+, t,] that 

satisfy with unit probability the requirements for the existence of continuous solutions 
X (t) and the probability density p (t, X) of process X (t) that satisfies the 
Kolmogorov -Fokker -Plank equation 

p (h X) /i=lr = P (to? X) 

where the superscript f defines the structure of the controlled system (1.1) on [t~_r, 
tjl , and 1, (u) (s = 0,. . ., q) are contkuous differentiable bounded function- 

als that represent mathematical expectation calculated by the formula 

where 51 cz: a,, is the realixation region of X. The symbol 1, (v) emphaaixes 
that v I= (u, a, T) are assumed to be independent variablea It is further arrumed 
that the functiotral I, (v) is bounded below, i.e that inf I, (u) = I, (IF) > 

- 00. 

2. Necsrrary conditions of optfmality. Onaboveassumpt- 
ions the problem (1.1) -( 1.3) reduces similarly to that in [4] to the determinate prob- 
lem of minimizatioa of functional I, (v) (1.2) in the presence of the differeutial 
relation (1.4). The necessary conditions of optimalfty are defined by the following 
theorem 

Theorem l(the principle of optimality in the mean). 
Optimality of the admissible control u* = (u*, a*, T*) of system (1.1) that malts 
in the minimum of functional I, (u) requires the existence of a random function 

1 (t, X) + 0 defined by the equations 

(2.1) 
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a) the optimal control II* wWs in the maximum of i&action 

M[rCi(t, x, U,U, h)] = f R’@, x, z&a, X)p(t, x)ax 
P 

of variable u for almost all 8 E [$-I, +I (j = 1,. . . , k) s ami 
b) parameters a* and T’ satisfy the trantvenality condition 

(2‘ 3) 

C 0 r 0 11 a r ye The optimal control EC* satftfies the relation 

When ~b* obtains in the interior of a set of ooetroh, the right-band side of (2.5) 
is zero. 

3. E x a m p 1 e. Let it be required to determine the optimal control u* of a 
system whase behavior on the tzme interval [O, Q] is successively deffncui on adjacent 
intervals lo, $1 and fZl, 3 by the stocba8tic equations 

which provide the turn of fuactionaf. 

(3.2) 



Systems defined by &chutlc dMerentM equatioar 851 

with constraint on the control 

lul6f (3.3) 

III conformity with the necessary conditions of optimality we seek the optimal con- 
trol ,u* ufilg the condition 

R (t, x, u*, 6 A) = max, R (t, X, u, a, A) 

R(t.X,u,a,h)=&Xs+&u 

(3.4) 

where 5 (t, X) is determined by the solution of equation 

(3.5) 

h (h, XL = - El (tr) - %I’, t E ftt, d 
A (219 X)_ = h (tl, X)+ - [Xi (tl) - +I’, t E Ih 01 

Using (3.4) and taking into account (3.3) we determine the optimal control 

ah 
u* (t) - sign ag, (3.6) 

Taking i&o consideraKon (3.6) and introducing the inverse Kme z = tr - 2 from 
(3.5) we obtain 

We seek the soluKon of li (2, X,, X,) of the linearly quadratic form [5] with in- 
determinate coefficients 

I = ko (2) + h (@XI + k, (7)X* + hell (@X? + k,, (s)X,X, + 
(3.6) 

ha (r)X? 

SubsKtuKng the expre&ons for 1 into (3.7) and equating coefficients at equal 
x = (X,, X,) we obtain for k (r) on IT*, q] the system of ordinary differential 
equations 

ko’ = kL -I- oh, 4’ = h,, k,’ = k, f 2k,, 

h’ = 0, k,,’ = 2k11, km’ = kl, 

(3.9) 

with initial conditi~ 

ko hi) = kz (a) = k,, (7s) = k, bs) = 0, h (%J = 24, kil (~3) = - 1 
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Solving (3.9) with initial conditions in inverse time we obtain 

12, (t) = c.2tz - + r3 - + 71, 
4 (z) = 2c2 - 9, k2 (T) = 2c.p - 23 

k,, (7) = - 1, kls (T) = - 2~, ka (2) = - t2 

As the result we can represent the optimal synthe&ing function U* on trzt %I 
in the form 

u* (T) = sign IZc,r - 73 - 2rx, - 2r~.X,] 
(3.10) 

On ltr, ~~1 the boundary conditions of system (3.9) are 

k, (tr) = 0, kl (Q) = 2 (cl -f- ca) - qz, k, (Q) = 2c,q - qs 

k,l (~1) = -2, 4s (q) = - ~1, ksp (71) = - trZ 

(3.11) 

Solving (3.9) in inverse time with bamdary conditions (3.11) on [tr, T,,], we 
obtain the optimal synthesizing function U* on lq, T,,J of the form 

u* (r) = sign [l/stIe - 2c,rr + 2 (Cl + C& - s/*r,ra - 2 (r - 71)s + (3.12) 

f-q - 4 (t - z,))Xr + 2 (--TIT - 2 (7 - r,PP-,I 

It follows from (3.10) and (3.12) that the optimal control is a piece-wise-constant 
function whose values are *I. 

4. Numerical method of optimal control search For 
the numerical determination of optimal control u* = (u*, a*, T*) of problem 
(I.. 1) -( 1.3) we apply the method of gradient projection. The computation algorithm 

for that method is determined by the form of the formula of the Lagrange first variation 
functional for arbitrary control variations. Let us compose for problerrGL 1) -( 1.3) 

the Lagrange functional 

where 9 = (a, I( W, B) is h vector of Lagrange, multfpliers. We introduce the EpI1cI- 
om function ?P (t, X), (j = 1,. . . , k; s = 0,. . , q) which is co~tfnu~ on b-~, 
t,] and satisfies the equatfon 

(4.2) 
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t E bj, tj_11 0’ = 1,:. ., k) 

A” (tjc X)_ = 3LIS(tj, X)+ - fi (a, tjt X') (j = 1,. m a( k - 1) 

kk’ (tk, x)_ = -f? (6 4, Xk) 

The formula for the first variation of the Lagrange functional can now be represent- 
ed in the form 

8F =&F((v+edv,q)= (4.3) 

ML,Rj’ - 
r-0 

k 

z [ML1 (hi’ - w’*‘) It-1 j + Ltifil &j 
$4 

Rs‘s n 
c 

r&qf(t,X,u,.) (i-1 ,..., k; s=O ,..., q) 
a=1 

Q 

ao=i, L,= 
I: 

aa ‘ au ’ L.,fjad s aa etc. 
6-O 810 

In conformity with the concept of the gradient method it is reasonable to cornida 
in the functional space the following iterative process of search for the optimal control 

~~x=u6+hn[MLupR*‘-LUO~,l (p=i ,..., r; j=i ,..., k) (4.4) 

n+l ai =up-“[j~lM(Lqf+ j ‘j l L,,R” dt) + La%.] 
(i = 1,. . .,rnq) 
tT1 Z tj" - h” [ML, (A*’ - P-1, “) ltzij + WLtjfj] (j = 1, . . ., k) 

. 

where n is the ordinal number of fteration, h” is the pitch of the n -th iteration. 
Expressions in the right-hand sides of (4.4) are calculated using the n -th solutions 
of (1.4) and (4.2) [S, ‘7J, 

To determine multipliers oc,, pa (t) and PI we select from all directioms 6~~” (t), 

&Y and St,” defined by the respective expressions in brackets in the right-hand 
sides of (4.4) the admissible directions that satisfy in conformity with the method of 
gradient projection the conditions 
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~b~~~g 8u$’ ($1, 6ufn, and 6Qn detexmined by rwtplsrsapr fn brackets in 
(4.4) and (4.5), we obtain a ched system of lincoI eqtathm izk the xtabown Lagstage 

~ltiplit~ a,, p,(t), aIKi p. l 
Since u (t) has an infinite number of values for 

every t , it is ev&knt that system (4,5) consists of an i&&e number of WaUm 
To overcome this difficulty we cover the time interval [t,+, t,) (j = 1,. . ., k) 
byadenumerablenetof@tch? with nodes t,, = yz(y = 1,. _ ,, N,tj z 

NT; Y # 1) , and cany out catkul &x&ion ref&em&# ~~~~~~~Of 
accnzacy at each f&ed t, E I ti+, til. 

Thus the iteration p&cm of optimal control determination reduces to the follow&g: 

cri *1= 
ai * - in [ ,;: M (L,i (fs’ - zffs’ 1 t-t,)) + Larg,] 

mli 

(f=+,...,nQ - 
ty s& tjn - ha [ML, (P - U-l* “) 1 tpctj c L*$] (f = 1, - f l , 4 

where detivatives in the ~t-~ sidea are c&&Wed fer sped&i +: (tf, atn and 
n at each fixed point of the cylimiez d;t 

2 (4.2); Multipliers a,, ps (t), and 

X @,,tb] along the kajectoz%es (1.4) 
f& are determined by solviug the non- 

degenerate system of l&ear algebraic equations 
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Coefficients at the unknown a,, pd (t), and h, are defined by the equations 
l 

B ms = 

I 

1 , . . ., q; I= o- 
s= 

0; I=1 

u vmw s=q+l,...,q+ko 
ma 

c A. ags 
Amy f s = q + ko + 9,. 0 .a q + S + qo 

i-1 
t 

Qjm = M 
afmj (hfrn - pm) lfPll + at, Qjs = Qjm lm- 

Note that the optimal control obtained for the detezminate problem formulated 
on the assumption that the system is free of interference, i. G. that Uiyj (t, X) 3: 0 , 
can be taken as the inMa1 approximath up0 (t), oto, t,” of the stoc~tic problem, 

Convergence of the process to the optimal soIutfon can be proved using the reason- 
ing of the proof in [5] with some addMona assumptions, 

l%e genetal form of the gradtent iteration process (4.6) is 

p+1 = v” - h”F,’ (v”, q”) (4.8) 
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where qn = {a”, p* (2), f+“) satisfy the nondegenexate system of linear equations 
(4.7). 

T h e o r e m 2. If the iimctioual F (v, q) is baunded below with respect to 
u and the gradient F,’ (0, q) 
0 (: e, < 

satisfies the Lipchit condition with constant MO, 
tt” < 2 (Ma + 2eJ + e, > 0 , then the fW,oWg tbtcm&nts hoId for 

the seqwnce (4.8). 
1". The functiouai F,’ (v”, 3”) monoto&alIy decreases with v, and lim 

fj vwz - v”Il=O when n+ac. 
2”. lim F,’ (u”, qn) =f), when n-too. 
3". of the functional F (u, q) is comw with reqxct to u , then 

lim F (P, qn) = F (v*, q) = inf, F (v, q), n+ 00 

5. E x a m p 1 e. Let us consider the problem of fTindiug the optimal control for 
system (3.1) which enaura the minImum of fkn&onal 

with the constraint 

where exp o&s in the rIg~t-~d tides are d&crr&ed by the )t -th suls#&uns of 
equations 

L-P == 0; P 0, m it+ = P @et X), t E IO, 1x1 (5.2) 

3 0, Xl /1*l* = P 01, Xh t = Ih, d 

L"po r 0, L+l.= = 0, 1"@ (t,) = -x, (Is) 



t E [ts, s,J; 
L+h'o = 0, 

t E ItI, 01 

a** (f& = - ix, (t,) - 4 
L+h*' = 0, alo (&)_ = a’@ (t,),; a” (Zl)_ = P (h)+ 

a a a* 
Lf=$ +&ax,+ Uagfyf axrpx* 
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The expressions for Eijo and Rjl (j = 1,2) are of the form 

6. Proof of Theorem 1. Toprovetheopffmalityconditionsweuse 
the principle of Lagrange [9]. For the problem of minimization of functional 10 (V) 
with the differential relati~ (1.4) and constraint (l.3) we define the Lagrange fimct- 
ional in the form (4.1). Let v* = (u*, a*, Z’*) be the optimal control. Let US 
coasider the control o c (u, a, T) , where 

whtre yi (i=i,..., k) is a half-open interval over which an almost impulsive 
variation &J = ot - u* occua [IO] de5ed on zi Q t < q + eli. 

Owing to the co~&~ou differentiability of functions cp$ (t, X, u, a), &’ (1, 
X) with respect to t, X, u, and a , solution of (1.4) with initial p (to, X) is 
con~ously differentiable Cith respect to e s when Au (t), &, and &T are fixed. 
We denote that solution by pr (t, Xr,, Au, &, ST) and detexmine the variation 

which specificallv means tit when 8 + 0 the term E&P is the principal tinear pati 
of p -J- e6p g--ted by the variation of control 

Stice v+ = (u* , a*, T*) is the optimal control, the fist variation of the 
Lagrange functional 
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P k 

must be nonnegative. 

Let us determine the first derivative of (6. lb From (I. 4) we have 

-&P.-F4 = CDL (t, ps, u* + Au, a* +- tdu) - cbi (t, p, u*, a*) (6.2) 

k 
tj' 

1aoxdt = 
at (6.3) 

: * tj” 

zsi i h +p.+-qgau.+~.8u 
I 

iixat + 

i-1 t* 
j-l 

Without the loss of generality of redbulb wb shall conrider a single ne&h&ke 
variation, since owing to the additivity proparties of (6.3) the effect of several, needle- 
like variations occurring eves vztrious infWtely short time intervals can be considered 

~de~ndenUy of each othez. bang by parts the left-hand &de of (6.3) and 
writing the expression in the right-band side with alXowance for (2.1) and (2.3) and 

transformation of integrals [4% we obtain 

[h (tj** X) & (tj** x) - X (t&t X)c)p (t&t X)1 dX = (6.4) 
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k 

[R’ (t, x, 0, a*, A) - Rj (t, x, u*, a*, A)] Itsz zp ax + 0 (e) 

Let IIS detexmine variations 6p (t,*, X), and 6p &*, X) . On the strength 
of the supplementary definition of u (t) we pas to the integral farm (t 4) beyond 
the limits [&I*, tj*1, we find that ILL the faisly short interval [ tj*, tjl 

‘j 
p (tj*, Z) z p (tj, X) - 1 pt dt, tj = tj* + C&j 

tjf 

(6.5) 

using the thtt~un OII finite increments and taking into account that 6Pj = P 
(tj, X) - p (tj*,X*), and 6p (tj*, X) = p (tj*, X) - p (tj*, X*) s from 

(6.5) we obtain 

6P oj*9 X) = 6pj - @t lt-l;’ Stj + 0 (4 (6.6) 

Similary we obtain 

SP @j-l** X) = bj4 - (Pt 1, t* )Stj, + 0 (e) 
i j-1 

The rubstitutian of (6.6) and (6.7) intO (6.4) yield 

11-I 

ii{Z [A (tj*v X)_ - h (tj*v X)+1 &Pi f h @k*r XI a& + 

j-1 

k 

2 
CV 

i-l 

- A4-:-‘)t_tj*Jaj)dX = 

.$-#u,-$La]pdXat+ 
k 

[Rj(t, x, 0, a*, 5) - d(t* x, aI*, a*, VI It=TlPdz + 0 (4 

(6.7) 

(6.8) 

We F formulas (4.2) and (4.3) for de termhtng the random functions A’ (t, X) 
and P (t, X, u, a, A) appearing in (6.8). Taking into account (6.8) from (6.1) 
we have 



which shorn that for any selection of variations &u, i3u, and 8T the f&owing ne- 
OptfmaffQ CoodwQlt: 

must be satisfied at point Q* = (u*, a*, T*). Since the iast aUty in 
(6. IO) holds for any QJ E U, hence 

M [Rj (t, X, u*, a*, ?v)] =xny iv IR” (t* x, w, a*, k).)f 

from which f~SIows stetement a) of Theorem L Conditions (6.10) conform to con&t- 
ions b) of that theorem and to its corollq (2.5). 

7. Proof of Theorem 2. The conditions of continuity of F,’ (If, +) 
imply that 



F,’ (v”, *) 0% = -hn~~F;(v”, l )-F,‘(v*, .)+ 

F,’ (v” - HPF”‘(P, : ,, *)I F,’ (u”, l ) dt 6 - l&n I, F; (v”, .) 112 + 

(hn)2 ,I F,‘(u”, -) ,,W{t o?t = ( (hnrM --I&* IIF;@“, .),,a= ) 
0 

TWS F fun, .) monotonically decreasea with respect to u. Sincethefunction- 
al F (0, .) is bounded with respect to v, hence Frn_F (P, .) exists and can8ec~ 
Ilently 

II u”*’ - vn 112 < [F (v”, 0) - F (y”‘“, +I / e, + 0 

wilen n-r 00. The first two statemalts are proved, 
If the functional F (u, .) is convex with respect to u, then 

0 < F fun, *) - F (~9, a) Q F,’ (v”, l )tvn - v*) 6 

II F,’ W’, l ) II II on+’ - u” II + + ll un+1- vn ll ll u* - P-1 ll < 

(ll Fo)(un, .,/I + $Ifu*--uncI(I) IIvntl- ~“11 

Since the expr&on in parentheses is bounded and, as previously proved, 11 vw’ 
-ung+.O, heme F(un, .)*F(u*, .) when n-co. Thetbeorem 
is proved. 
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